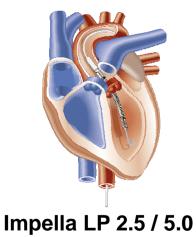
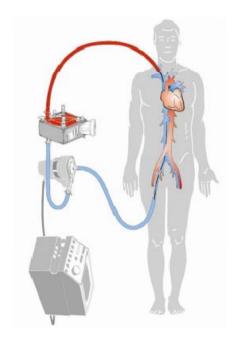
OPTIMIZING OUTCOME WITH MECHANICAL SUPPORT IN CARDIOGENIC SHOCK:
WOULD MORE (DIASTOLIC)AUGMENTATION IN IABC






# LIFE SAVING THERAPIES FOR ACUTE AND HIGH RISK PATIENTS: MAQUET **AVAILABLE PERCUTANEOUS CARDIAC ASSIST DEVICES**










**TandemHeart** 

### cardiopulmonary support (CPS)





#### THEORETICAL ASPECTS OF IABC







### **IABC** ( Intra-Aortic Balloon Counterpulsation ):

- Therapy strategy for support of the left ventricle in case of myocardial dysfunction (left ventricle failure)
- Developed over 40 years ago
- Main goals of IABC are an **increase** of coronary perfusion and a **decrease** of myocardial oxygen demand
- Top indication for IABC is **cardiogenic shock**
- Recommended indications for IABC are pre-operative and pre-interventional usage for "high risk patients"

# THE IAB PLACEMENT







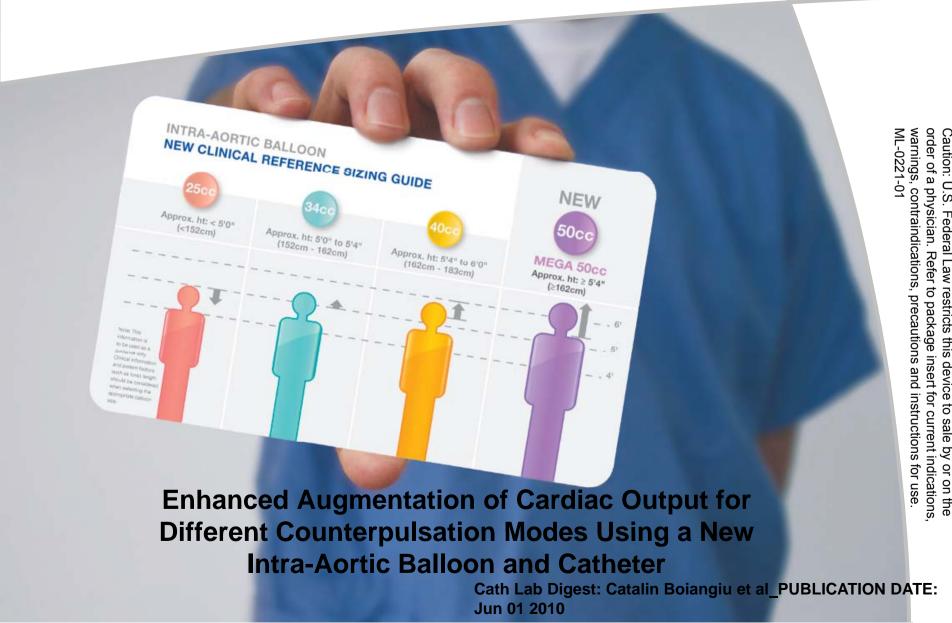
# **IAB INFLATION - DIASTOLE**





- Augmentation of diastolic pressure
- **Increase** coronary perfusion
- Increase Myocardial Oxygen Supply

# **IAB DEFLATION - SYSTOLE**






- Decrease afterload
- **Decrease** cardiac work
- Decrease myocardial oxygen consumption
- Increase cardiac output

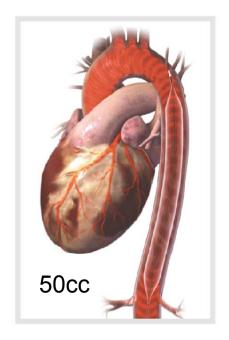
# MEGA™: WOULD MORE AUGMENTATION BE BENEFICIAL?

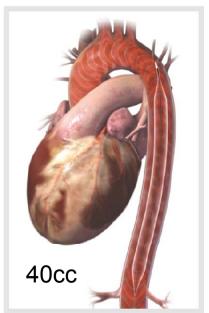




Caution: U.S. Federal Law restricts this device to sale by or on the order of a physician. Refer to package insert for current indications

#### INTRODUCTION

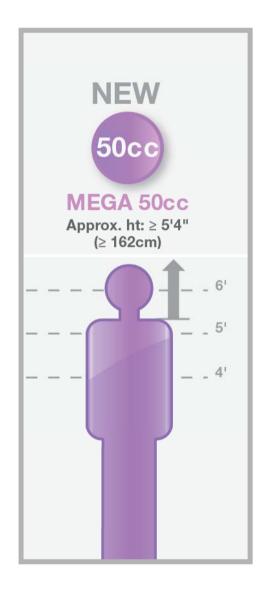




- Benefits of balloon counterpulsation depend on several patient specific factors:
  - balloon-to-aorta cross-sectional area
  - aortic wall compliance
  - heart rate
  - peripheral vascular resistance
- The authors evaluated the new MEGA™ 50cc IAB catheter offering 25% more blood displacement than the conventional 40cc IAB catheter



# 1. Improved Performance Compared to 40cc IABs

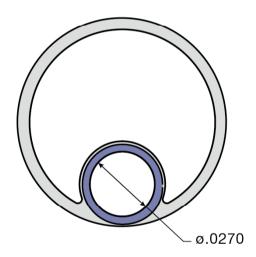
- 25% more blood volume displacement
- Improved unloading and augmentation
- Delivering 10cc more volume at a comparable speed







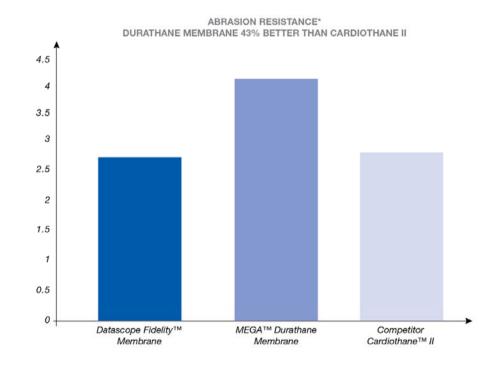

# 2. Greater Application


- For patients 5'4" (162cm) and taller
- The benefits of a 50cc are now available for smaller patients



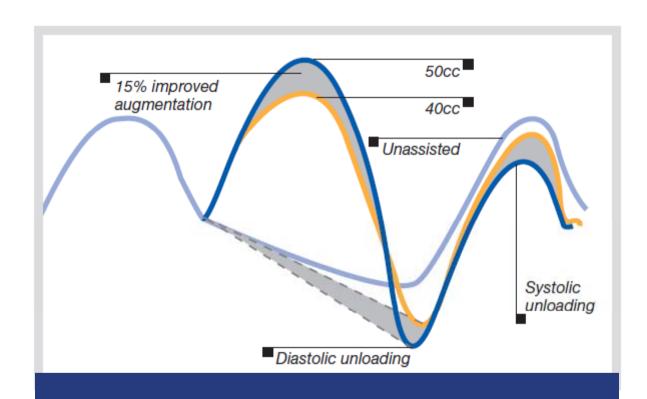


### 3. True 8Fr. IAB Catheter


- Shaft design is 8Fr.
- Unique balloon wrap provides an 8Fr. profile
- No step down
- Reduced catheter cross sectional area by 24% vs. 10.5Fr.
- Can be used with 8Fr. sheath or inserted sheathless
- Fluid-filled inner lumen 0.027"






### 4. Durathane Blow-Molded Balloon Membrane Benefits

- Abrasion Resistance Improved 43%
- Improved Fatigue Resistance
- Reduced Insertion Force
- Immediate Inflation at Start-up



#### MEGA - IMPROVED UNLOADING AND AUGMENTATION SHEET





#### MEGA 8Fr. 50cc when compared to 40cc IAB catheters showed:

On average 58% more systolic unloading

On average 15% improved augmentation area under the curve

Reduction in aortic end diastolic pressure

#### **CASE PRESENTATION**



- A 60 year-old man presented with a large antero-septal STEMI to a satellite hospital
- Antithrombotic therapy was instituted with aspirin, clopidogrel, and intravenous heparin
- In the absence of primary PCI capabilities, thrombolysis with intravenous tPA (tissue plasminogen activator) was attempted, without success
- The patient continued to have chest pain and developed ventricular tachycardia requiring electrical cardioversion and antiarrhythmic intravenous infusion
- He was transferred to this tertiary hospital for emergent/rescue PCI
- Findings: 90% proximal LAD stenosis, and 95% stenosis in the mid-segment of the LAD.
- Successful PCI with drug-eluting stents was performed with restoration of normal (TIMI-3) flow through LAD.
- Due to persistent systemic hypotension during the procedure, a 50 cc. Mega<sup>™</sup> intra-aortic balloon was inserted for hemodynamic support

#### **METHODS**



- Augmentation in cardiac output can be demonstrated using various methods
- Doppler echocardiography [noninvasive] was used to assess the beneficial effect of counterpulsation
- Pulsatile flow through the aortic valve generates variable velocities during ejection. The sum of these velocities – the time-velocity integral [TVI] = the area under the Doppler velocity profile

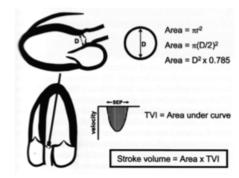



Figure 1. Schematic depiction of the method for estimating transvalvular flow using Doppler echocardiography. D = diameter; TVI = time-velocity integral. Reprinted from Armstrong et al., with permission.

 The product of TVI and cross-sectional area of the aortic annulus = the stroke volume

#### **METHODS**



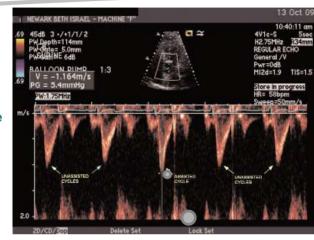
- Doppler echocardiography was performed during counterpulsation with measurements of the aortic annulus and TVI in different assist modes
- The measurements for TVI were performed both in continuouswave and pulsed-wave modes
- Pulse-wave-measured TVI values were used for these calculations.
- Pulsed- and continuous-wave Doppler tracings were recorded after
   ≥ 5 minutes had elapsed in each assist mode (no Standby mode)
- TVI measurements were performed for 5 consecutive cardiac cycles and averaged according to the current American Society of Echocardiography(ASE) recommendation
- Calculations were measured for stroke volume and cardiac output at an average heart rate of 60 beats per minute [bpm]

### **METHODS**

Estimate of the absolute increase in cardiac output using IABP in various assist modes



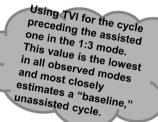
Surrogate baseline:


Stroke volume:74.4 mL

Cardiac output: 4.46L/min

Heart rate: 60 bpm

■ TVI = 17.3 cm


Pulsed-wave-mode Doppler showing time-velocity integral of the flow across the aortic valve in 1:3 assist mode. Green arrow represents the TVI for the cycle immediately preceding the assisted one.



 Evaluation of the relative augmentation with the IAB in all 3 assist modes were made

# Table 1. Measurements and Calculations for Different Assist Modes

| Assist mode | Time-velocity integral (cm) | Stroke volume<br>(mL) | Cardiac output (L/min) |
|-------------|-----------------------------|-----------------------|------------------------|
| 1:1         | 19.92                       | 85.66                 | 5.14                   |
| 1:2         | 18.92                       | 81.36                 | 4.88                   |
| 1:3         | 18.08                       | 77.74                 | 4.66                   |



#### **RESULTS**



- Augmentation was calculated as 15%, 9%, and 4% in the 1:1, 1:2,
   1:3 modes respectively and CO was significantly increased
- 1:1 mode demonstrated an additional 10.2% increase in stroke volume and 4.6% increase in 1:2 mode
- These findings, which demonstrated higher average augmentations than using smaller volume IAB catheters reported in other papers, appear to be related to the 50cc IAB catheter

| Table 2. Calculated Relative Augmentation of Cardiac Output for Various Assist Modes |                             |                        |                           |  |
|--------------------------------------------------------------------------------------|-----------------------------|------------------------|---------------------------|--|
| Assist mode                                                                          | Time-velocity integral (cm) | Cardiac output (L/min) | Relative augmentation (%) |  |
| 1:1                                                                                  | 19.92                       | 5.14                   | 15.25                     |  |
| 1:2                                                                                  | 18.92                       | 4.88                   | 9.42                      |  |
| 1:3                                                                                  | 18.08                       | 4.66                   | 4.48                      |  |
| "Baseline                                                                            | " 17.30                     | 4.46                   | Reference                 |  |

#### **RESULTS**



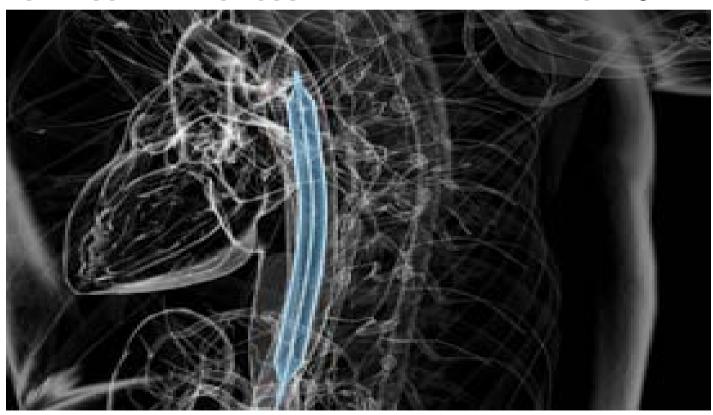
- The increase in blood volume displacement appears not to be the only benefit during inflation but also the larger diameter of the inflated balloon, [17.4 mm] compared to the 40 cc [15 mm] that reduces the cross-sectional aorta-to-balloon ratio.
- An further benefit is the lower caliber shaft which can translate into a true reduction in the incidence of vascular complications as published "Comparison of outcomes after 8 vs. 9.5 French size intra-aortic balloon counterpulsation catheters based on 9,332 patients in the prospective Benchmark® Registry." Catheterization and Cardiovascular Interventions 2002;56(2):200-206.

#### **DISCUSSION**



- Larger blood volume displacement during inflation
- Larger diameter of the inflated balloon reduces the cross-sectional aorta-to-balloon ratio, thus improving augmentation
  - Balloon inflated diameter: 50cc [17.4 mm] compared to the 40 cc [15 mm]: 16% more
  - Aorta cross-sectional area: 50cc 237.66 mm² vs. 40cc 176.625 mm² 34.55% more
- Same insertion point (8Fr.) as the 40 cc balloon catheter:
  - Less vascular complications
  - Use in patients with peripheral vascular disease
- Same length as the 40cc balloon:
  - Can be use in patients 5'4" (162 cm) and taller for enhanced augmentation

#### **DISCUSSION**




- New case report was published by Dr. Nair's in Journal of Invasive Cardiology, April 2011:
  - Improvement in Hemodynamics with a New, Larger-Volume (50cc) Intra-Aortic Balloon for High-Risk Percutaneous Coronary Intervention
- Statement: "In our patient (162,6cm), the use of a new larger-volume IAB, which provides 25% greater blood volume displacement compared with the 40 cc balloon, produced remarkable diastolic augmentation and increased the diastolic aortic pressure by ~110mmHg over the baseline level that resulted in improved hemodynamics."
- Further research is warranted to investigate the exact mechanisms and implications





- Use of a larger volume, improved, potentially safer counterpulsation balloon appears to provide enhanced cardiac augmentation
- The mechanisms and implications of this effect warrant further research
- MORE AUGMENTATION COULD DEFINITELY BE BENEFICIAL ③

